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Teaching Robots New Tasks 
through Natural Interaction

Joyce Y. Chai, Maya Cakmak, and Candace L. Sidner

Abstract

This chapter focuses  on the main challenges and research opportunities in enabling 
natural interaction to support interactive task learning. Interaction is an exchange of 
communicative actions between a teacher and a learner.  Natural interaction is viewed 
as an interaction between a human and an agent that leverages ways in which humans 
naturally communicate and does not require prior expertise. The goal of communica-
tion is to achieve common ground and allow the learner to acquire new task knowledge. 
This chapter outlines the different types of knowledge that can be transferred between 
agents and discusses the  perception, action, and coordination capabilities that enable 
teaching–learning interactions.

Introduction

Extending the framework introduced by Mitchell et al. (this volume), our focus 
in this chapter is on natural interactions between a human and an agent that 
enable interactive task learning (ITL). Refl ecting most prior work on this topic, 
we focus on ITL scenarios where the teacher is a human and the learner is a 
physically embodied agent (e.g., robot) as opposed to a software agent.

Imagine an elderly couple, Katie and John Smith, who purchased a robot 
“Mia” as their  personal assistant. Mia comes equipped with general knowledge 
of household chores and perceptual capabilities to recognize common house-
hold objects, such as those sold in grocery and hardware stores. Mia also has 
basic manipulation skills like grasping common objects or opening different 
types of containers. Despite these preexisting capabilities, Mia is unable to 
perform many tasks at Katie and John’s house right out of the box. Not only 
does Mia need to be taught the unique tasks that the Smiths desire, it must 
also acquire new knowledge and capabilities to enable those tasks. The pro-
cess of learning these tasks as well as task-relevant knowledge and capabilities 
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happens through various forms of interaction with people, as in the following 
scenarios:

On the day of delivery, David, an employee from the company that manu-
factured Mia, arrives at the Smiths’ with the new robot. David has an associ-
ate degree in robotic technology and has completed training on how to teach 
robots. The process starts with teaching Mia a map of the Smiths’ house. David 
manually drives Mia to different rooms to construct the map and verbally pro-
vides information about each room as well as different points and regions in 
the room, such as where the main entrance is and the locations of appliances, 
trash bins, tools, and supplies. Next, David programs a set of basic skills tai-
lored for the Smiths’ house: how to open or close their cabinets, drawers, and 
appliances, for example, as well as how to operate various tools and appli-
ances. He teaches Mia these skills by moving the robot’s arm to demonstrate 
them. Then, under various scenarios, David tests the learned skills to ensure 
they are robust.

Once Mia is settled in the new house, the Smiths continue to teach Mia 
new knowledge and tasks. For example, they show where to put groceries or 
kitchen tools through  pointing and verbally describing their locations with 
natural  language: “The waffl e maker goes in the bottom cabinet next to the 
stove.” Katie also teaches Mia how to make their favorite dish from a family 
recipe. Using natural language and deictic  gestures, Katie shows Mia differ-
ent ingredients and demonstrates how and in which order to mix the ingre-
dients. Mia sometimes has diffi culty  understanding Katie’s instruction. For 
example, when Katie asks Mia to “grind the onion,” Mia does not understand 
what “grind” means and subsequently asks for further instructions. Katie then 
provides detailed step-by-step instructions to show Mia how to perform the 
action “grind”: “cut the onion in half, put the pieces into the blender, and press 
the top button.” By following Katie’s instruction and observing the change 
of the onion, Mia learns the meaning of the verb “grind” with respect to how 
the corresponding action changes the physical world. Mia can now transfer 
this understanding and perform related actions, such as “grind the carrot,” 
assuming that Mia understands what a carrot is. Through this type of inter-
action, Mia continuously optimizes its  task performance based on  feedback 
from Katie, such as: “That looks slightly overcooked. Try reducing the baking 
time next time around.”

For outdoor chores (e.g., a simple car maintenance task), John instructs 
Mia similarly to how he taught his son: he demonstrates how to (a) open the 
hood of the car, (b) check the engine oil, (c) check the radiator coolant and 
fi ll if needed, (d) check the windshield wiper fl uid and fi ll if needed, and (e) 
replace the air fi lter if it is dirty. John and Mia both use language and deictic 
gestures to establish shared  attention  during the  teaching–learning process. 
Once John explains and demonstrates how to fi ll radiator coolant, Mia can ap-
ply the learned skill to fi ll windshield wiper fl uid. To teach the task, John uses 
conditional statements (e.g., “if the oil is below this line, then add coolant”) 
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and purposive descriptions (e.g., “you hold it because the funnel is too big,” 
“put it so that the screw comes through the narrow part,” or “place it right 
where the middle center opens into the screw so that the screw goes through 
the middle hole where it’s open”). Mia extracts causal effect relations and 
converts them into schemas to support  action  planning and execution. The 
process also involves learning  background  knowledge mentioned in condi-
tional statements, such as a too large funnel, the air fi lter being dirty, the time 
needed to hold an object in place, or the colors of objects through demonstra-
tions or examples.

To understand Mia’s capabilities and limitations, the Smiths can ask Mia 
different questions about its knowledge and its representation of the shared 
environment and tasks. These questions not only include “what” questions, but 
also “why” and “how” to assess Mia’s reasoning and decision-making capa-
bilities. Mia also proactively communicates with the Smiths about its internal 
representations of the world and the tasks, as well as the underlying  reasoning 
that might take place to reach certain conclusions or decisions. Mia can even 
teach the Smiths’ grandson how to cook their favorite dish and how to do car 
maintenance.

These scenarios illustrate different types of natural interaction that humans 
can use to teach robots new tasks or task-relevant knowledge and capabili-
ties: by performing the task themselves, by verbally or kinesthetically guiding 
the robot, or through situated language instructions and gestures. This natural 
interaction between humans and agents instantiates the general framework of 
ITL, as shown in Figure 9.1. The human teacher has some target task knowl-
edge in mind and intends to transfer this knowledge to the robot through vari-
ous forms of interaction. Let S represent the set of states of the physical world 
relevant to the task and Sc represent the set of states of communication, such 
as the verbal utterances or focus of attention of the teacher at each step of the 
interaction. The robot learner perceives a task-related world state s ∈ S through 
its sensors and constructs a communicative state  based on its perception of the 
teacher’s communicative actions. Let A represent the set of task-related actions 
(e.g., pick up an object) and Ac the set of communicative actions (e.g., asking 
for confi rmation for its interpretation of a world state) available to the robot 
through its effectors. At each step of the interaction, the robot needs to decide 
what task-related actions a ∈ A and/or communicative actions ac ∈ Ac it should 
take, given its current state and learning goals. The sequence of states and 
actions that a robot goes through during ITL constitutes its interaction experi-
ence. The robot needs to then extract learning  experience from its interaction 
experience to obtain examples, specifi cations, and feedback to acquire new 
task knowledge.

Enabling  ITL in robots through natural interactions requires a wide range of 
capabilities for  perception, action, reasoning, learning,  decision making, and 
communication. Here, we discuss the challenges and open questions associ-
ated with these capabilities. Specifi cally, we explore
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• forms of human teaching and the different kinds of knowledge that can 
be taught or learned through interaction,

• capabilities to perceive and infer task-related state and communicative 
state through sensors, including visual scene understanding, language 
understanding, and grounding language to  visual  perception (e.g., the 
environment,  perception of human gestures, and perception of human 
actions),

• capabilities to act in the environment through effectors, including act-
ing to manipulate the environment and communicating to the human 
during interaction, and

• capabilities to manage and coordinate interaction and establish com-
mon ground.

Types of Task Knowledge and Forms of Interaction

Humans  can learn new tasks from other humans through various means: 
watching each other perform the task, doing the task themselves accompanied 
by instructions and guidance, or conversing and imagining the task without 
performing any actions (e.g., acquiring a new recipe). Similarly, as illustrated 
in our example scenario, robots can learn from humans in analogous ways. 

As shown in Figure 9.2, in ITL the robot needs to extract learning experi-
ence from interaction experience through interaction. The learning experience 
can involve examples of goal states, examples of action sequences that lead 
to a goal, or evaluations of action sequences generated by the robot. These 
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Figure 9.1 Extended two agent and world model separating task-related states and 
actions from communicative state and actions. Task-related states (S) and actions (A) 
are the minimal set of states and actions that an agent needs to perform the target task 
successfully. Communicative states (Sc) and actions (Ac) are what an agent needs to 
communicate to extract useful data and provide feedback for learning.
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different learning experiences can be expressed in terms of the physical world 
state (si), task-related actions (ai), and values assigned to them (vi). The goal of 
task learning is to extract different types of task knowledge such as task goal 
(e.g., v(s) → v) and task procedure (e.g., a policy to perform the task π(s) → a) 
from these experiences. Different learning algorithms require specifi c types of 
experience data (e.g., direct policy learning requires sequences of state-action 
pairs). The role of the communicative actions is to extract this data from the 
unstructured stream of data that the agent experiences. For instance, commu-
nicative actions by the teacher might indicate the start and end of a demonstra-
tion to help the learning process, even though the communicative states and 
actions are excluded from the learning data. As we discuss next, the way in 
which task knowledge is transferred and the role of communicative actions in 
that process largely depends on the type of task knowledge.

Task Knowledge Types

The main goal of task learning is to acquire task knowledge, which defi nes 
what a task is and provides suffi cient information to permit the robot to per-
form the task on its own. There are different types of task-related knowledge 
and capabilities (described below) that can be acquired during interaction. 
As discussed by Laird et al. (this volume), task-related knowledge often in-
cludes goals, actions, and constraints which defi ne the  problem space as well 
as procedural/ policy  knowledge needed to perform the task. Here, we focus 
on two types of task knowledge and their representations: task procedures and 
task outcomes.

Task procedure information captures what the agent needs to do to com-
plete the task, as shown in Figure 9.2. Most existing agent frameworks rep-
resent procedural information as a policy, which is a function that maps the 
perceived state to an action: π(s) → a. Such functions can be represented by 
many different types of classifi ers or regressors and be learned from examples. 
Process information can also be captured in more explicit forms such as plans, 
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programs, fi nite-state machines, or  hierarchical task networks. Although these 
different representations do not necesarily provide a full mapping of states to 
actions, they still capture  procedural  knowledge by specifying a sequence, a 
partial ordering, a schedule, or a hierarchical organization of actions in the 
context of a task. For example, Pardowitz et al. (2007) introduced task prece-
dence graphs that capture ordering constraints between actions involved in a 
task. Similarly, Ekvall and Kragic (2008) represent tasks with a set of ordering 
constraints between pairs of actions. Alexandrova et al. (2015) use a fl ow dia-
gram to represent tasks with actions that have pre- and postconditions that can 
cause branching in the program. Huang and Cakmak (2017) use the general-
purpose visual programming language, Blockly, to represent various branching 
and looping tasks.

Task outcome information relates to the goals or desired outcomes  of a 
task, independent of the process followed to achieve them. This is different 
from the actual outcomes when performing a task (which can be expected or 
unintended). Task goals are often captured by the reward or value functions 
associated with states and actions, assuming the agent is maximizing reward 
or value. In practice, task goals might be easier to express in terms of world 
states in which the task is considered complete; for instance, a conjunction of 
state variables that need to be true or other arbitrary functions that evaluate a 
given state in terms of whether the goal is achieved. A value can then be as-
sociated with each state based on how close they are to a goal state. The task 
“tidy up the living room,” for example, could be specifi ed with the list of items 
in the room and their desired locations, without any information on how to get 
them there. Such a representation was used by Chao et al. (2011) to represent 
simple object reconfi guration tasks. The ability to carry out tasks based solely 
on specifi ed goals often requires the robot to have  planning capabilities.

Some task representations involve combinations of process and outcome 
information. For example, a recipe for a particular dish specifi es not only a 
sequence of actions but also mentions what to expect at the end of the process 
or when a task is considered complete.

Forms of Interaction in Transferring Task Knowledge

There are many forms of interaction that enable transfer of task knowledge. 
Our focus here is on two key types of information transferred in those interac-
tions:  demonstrations of the task and direct specifi cations of task constraints 
or properties.

In learning task processes from task demonstrations, multiple demonstra-
tions provide alternative ways of achieving the same task (e.g., Argall et al. 
2009). Different task representations capture this information in different 
ways. For example, a partially ordered plan captures alternative orderings of 
low-level actions. Hence different demonstrations of the task might involve a 
different ordering of actions. Similarly, a program with  conditionals and loops 
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captures alternative ways of performing a task, depending on a perceivable 
“condition” or different numbers of repetitions contingent on user-specifi ed 
or environmental parameters. Different demonstrations of such tasks will in-
volve alternative traces of the program. Task outcomes can also be taught by 
demonstration. Multiple examples provide variations of the states in which the 
task is considered successfully completed. One of the key computational chal-
lenges is to identify parts of the state that are relevant/irrelevant for the task. 
Thus it is important for demonstrations provided by the teacher to involve such 
variations.

Tasks can be demonstrated through different forms of interaction (e.g., by 
the teacher performing the task, or provided directly to the robot, with guid-
ance from the human teacher). In tasks performed by humans, one of the most 
intuitive ways to demonstrate a task is for a human to perform it herself. For 
the robot to learn from this type of demonstration, the robot must be able to 
perceive the human’s actions and/or the effects of human action on the en-
vironment. Perception of human actions can be facilitated through external 
sensors or wearable sensors on the human. Once a robot perceives human ac-
tions, they need to be mapped to corresponding robot actions. This is referred 
to as the  retargeting problem. In some cases,  perception of actual actions is not 
necessary, as long as the robot can detect the state changes that result from the 
task demonstration and learn the task based on that information (Baisero et al. 
2015; Mollard et al. 2015).

For tasks performed by a robot with guidance from a human, the human 
teacher demonstrates a task to the robot by guiding it through the task. This 
mode of teaching bypasses the retargeting problem but requires the teacher 
to have a good  understanding of the robot’s action capabilities. The guidance 
to the robot can be provided in various ways, from kinesthetic movements to 
verbal instructions:

• Kinesthetic guidance involves physically holding the robot and moving 
its manipulators to perform the task (e.g., Akgun et al. 2012; Phillips 
et al. 2016).

• Natural  language guidance involves instructing the robot on what to 
do to perform the task. Mohan et al. (2012) and She et al. (2014), for 
instance, use step-by-step language instructions to teach new tasks to 
a robot.

• Multimodal language guidance uses multimodal instructions (speech 
and gestures) to guide a robot through the task.

•  Gestures often serve to reference parts of the environment.
•  Joystick-based guidance involves driving the robot and triggering pre-

specifi ed actions with the help of a special device to perform the task.
•  Guidance based on graphical user interfaces (GUIs) employs a graphi-

cal interface to control the robot and trigger prespecifi ed actions to per-
form the task.
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In task specifi cations, alternative ways of achieving a task are directly speci-
fi ed by the teacher in a format compatible with the robot’s task representation. 
For example, for a partially ordered plan representation, the teacher might ver-
bally state:

First bring all of the ingredients and tools to the kitchen counter (in any order). 
Second, pour all of the dry ingredients into the mixing bowl (in any order).

While teaching by demonstration inevitably involves a particular ordering of 
the actions and hence requires multiple demonstrations to capture order in-
variances, direct specifi cation provides an effi cient way to provide the same 
information. Similarly, if the representation is a program, the user can directly 
specify loops or  conditionals by literally writing a program or verbally specify-
ing those with instructions:

Insert a toothpick into the center of the cake. If it comes out clean, take out the 
cake; otherwise continue to bake. Alternatively, for each cup on the muffi n pan, 
pour until three-quarters full.

Similarly, direct specifi cation of task goals involves the teacher directly indi-
cating parts of the world state that are relevant or irrelevant to the robot’s task, 
rather than trying to exemplify variations of positive and negative goal states. 
For example, the teacher may verbally describe the desired goal state when 
teaching a robot to set a table:

The red bowl should be on top of the green plate, and the napkin should be placed 
to the right of the plate.

Task specifi cations can be provided through natural language or GUIs:

 Natural language specifi cations involve the use of language to specify 
directly certain properties or constraints about the task representation. For 
example, Cantrell et al. (2012) use natural language to specify precondi-
tion and effects of action schemas for task  planning.

  GUIs can be used to specify properties or constraints about a task being 
taught to a robot.

Humans often combine these two means of communicating task knowledge 
(demonstrations and specifi cations). For example, a teacher might demonstrate 
the physical act of adding different ingredients to the mix in a particular order 
as part of teaching a recipe, while verbally specifying partial ordering con-
straints by saying: “Add all dry ingredients in any order.” Similarly, a person 
might set up the table themselves to show an example of how they want the 
table to be set, but then specify invariance constraints by saying: “The salt and 
pepper can be anywhere in the center area of the table.”

Regardless of the specifi c form of interaction, during learning, symbolic 
representations of human inputs (e.g., GUI, natural language) need to be tightly 
grounded to the robot’s internal representations of perception and action.

From “Interactive Task Learning: Humans, Robots, and Agents Acquiring New Tasks through Natural Interactions,” 
edited by K. A. Gluck and J. E. Laird. Strüngmann Forum Reports, vol. 26,  

J. R. Lupp, series editor. Cambridge, MA: MIT Press. ISBN 978-0-262-03882-9.



 Teaching Robots New Tasks through Natural Interaction 135

Task-Relevant Background Knowledge and Capabilities

When  we speak about a robot learning new tasks, we often assume that the 
robot has the necessary  background  knowledge and capabilities. The ability to 
perform new tasks, however, might equally be due to the acquisition of other 
knowledge or capabilities, not solely due to newly acquired task knowledge. 
Hence, the ability to acquire these different kinds of background knowledge 
and capabilities through interactions is also highly relevant for task learning. 
For instance, the capabilities of a robot that already knows the task of sorting 
objects, based on different properties, can be expanded through the acquisition 
of new perceptual capabilities (e.g., the ability to detect new object proper-
ties) or new action capabilities (e.g., the ability to manipulate new types of 
objects). Below we list four types of knowledge and capabilities relevant for 
task learning:

1. Perception capabilities refer to the ability to perceive the task-relevant 
environment and interpret human language, including
• state and actions of humans,
• state, properties, and affordances of objects,
• scene composition (surfaces, objects, humans, and their rela-

tionships),
• changes of the state that occurred to the environment, and
• state of communication such as communicative intent and focus 

of attention.
2. Action capabilities refer to lower-level policies that control a robot’s 

actuators to carry out tasks and/or communicate with humans. These 
include capabilities that allow robots to
• navigate the environment,
• manipulate objects in the environment, and
• communicate with humans in the environment.

3. Linguistic knowledge concerns the meanings of words and phrases. For 
physical robots, which need to sense from and act upon the physical 
world, as opposed to the symbolic world, this knowledge cannot be 
purely symbolic as in a dictionary or thesaurus. Word semantics need 
to be grounded to the robot’s sensorimotor skills.

4.  World  knowledge captures any other task-relevant knowledge about the 
world and how the world works:
• Facts about the world and the robot’s  task environment: “my own-

er’s name is Katie Smith” or “I was built in 2017.”
•  Commonsense knowledge that allows a robot to interpret human 

language and reason about its perception and action goals (Al-
Moadhen et al. 2013; Tenorth and Beetz 2009): to “boil the water,” 
water must fi rst be placed in the boiling pot.
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•  Action knowledge that captures the existing knowledge about sub-
tasks and subgoals previously acquired or learned. Formal action 
models capture preconditions and effects of actions (Fox and Long 
2003). Preconditions specify world states in which the action is 
applicable; effects specify the expected changes to the world state.

•  Domain  knowledge that corresponds to information specifi c to a 
particular  task environment or user that a robot needs to perform 
its task. For example, a robot that performs object deliveries to 
hotel rooms needs to have a map specifi c to the hotel within which 
it is deployed, with room numbers annotated on the map.

Some of these types of knowledge and capabilities can be programmed into a 
robot. They can also be acquired through interactions with humans, although 
the means of acquisition is less clear than that for task knowledge.

Forms of Interaction for Learning Task-Relevant 
Knowledge or Capabilities

The types of interactions that support acquiring task-relevant knowledge and 
capabilities are similar to those involved in learning the task itself. As shown 
in Table 9.1, the forms of interaction often depend on the kind of knowledge 
or capabilities to be learned. For example, to help train the robot’s  visual  per-
ception capabilites, the teacher may use language descriptions and also show 
target objects from different angles. To acquire the navigation map, teleop-
eration (e.g., through  joystick guidance) can be  employed as well as language 

Table 9.1 Example forms of interaction for different types of knowledge

Knowledge Example Forms of Interaction
Perception
capabilities

• Natural language and deictic  gestures to teach labels of objects and 
indicate their relations

• Natural language to specify object affordances
Action
capabilities

• Kinesthetic demonstration to teach low-level control policies to 
generate arm trajectories or navigation strategies

 Linguistic
knowledge

• Natural language combined with deictic gestures to teach nouns and 
adjectives

• Natural language combined with action demonstration to teach ac-
tion verbs

World
knowledge

• Natural language to specify order constraints among sub-actions
• Natural language to specify causality (i.e., precondition and effect) 

of an action
• Demonstrations performed by the human to show how basic ac-

tions/verbs change the state of the world
• Joystick guidance to build a map of the robot’s environment for 

navigation
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descriptions. Acquisition of low-level  action knowledge (e.g., lower-level 
policies to generate trajectories) may benefi t from  kinesthetic demonstration 
whereas higher-level task knowledge (e.g., partial orderings) may best benefi t 
from language instructions.  Linguistic knowledge certainly involves the use of 
language, which is often combined with deictic gestures or action demonstra-
tions because the semantics of words need to be grounded to  visual  perception 
and the change of state in the physical world.

Open Questions in Enabling Effective Task Learning Interaction

Teaching Presupposed Task-Relevant Knowledge

While previous work has investigated the acquisition of many types of task-
related knowledge and capabilities, the acquisition of  commonsense world 
knowledge in task learning has largely gone unexplored. In human–human 
interactions, knowledge about the world and the domain is often presupposed. 
The speaker and the listener believe they share the same kind of world knowl-
edge, so it does not need to be explicitly stated. However, in human–robot in-
teractions, huge discrepancies in world knowledge can exist between humans 
and robots. Often, the robot does not have suffi cient background knowledge to 
learn a new task. Thus human teachers need to be able to assess what kind of 
background knowledge the robot has and how to teach the robot background 
knowledge pertinent to the task at hand. For example, the result states of ba-
sic action verbs are not usually specifi ed, and humans naturally take them for 
granted. Existing lexical resources (such as Verbnet, FrameNet) and preexist-
ing knowledge bases (e.g., Google’s Knowledge Graph, Freebase) do not offer 
the level of detail required for the robot to understand the very basic principles 
about the conditions for their actions (e.g., “put A on B” requires A generally 
smaller and lighter than B) and how their actions may change the world (e.g., 
slicing a cucumber may lead to the change of the shape, size, and pieces of the 
cucumber).

Thus, it is important to understand what a human must teach a robot about 
the domain of a task. Some background knowledge (e.g., time as duration, 
units of time, and time relations) may be best taught or acquired once for many 
domains, but much human knowledge is domain specifi c. Learning domain-
specifi c knowledge leads to a whole new set of research questions:

• How does the human know what knowledge the robot (e.g., sub-
actions) has so that it can be used to teach new tasks?

• During task learning, what signals indicate the lack of background 
knowledge and therefore human teaching is required?

• How can existing resources be leveraged to acquire the correct level of 
background knowledge during teaching?
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• What level of granularity should background knowledge be taught by 
a human?

• How should background knowledge be represented and used for effec-
tive reasoning and inference?

Combining Different Forms of Interaction for Task Learning/Teaching

Most previous work on task learning has focused on a single form of  interac-
tion for teaching. Except for a limited few (Kirk et al. 2016; Mohseni-Kabir 
et al. 2018; Niekum et al. 2015; Rybski et al. 2007), techniques that combine 
language, dialogue, and action demonstration to teach complex tasks are in 
critical need. As discussed above, different forms benefi t different types of 
knowledge. In addition, as the situation changes (e.g., the lighting situation 
changes from being good to poor), the form of interaction may need to adapt 
(e.g., switch from visual demonstration to language instruction). Thus we need 
to know how to seamlessly combine and adapt different forms of teaching to 
enable the most effective teaching. Is combining and adapting a problem for 
human teachers or a problem for robot learners? The answer is both.

Teaching Humans How to Teach Robots

After working with a robot, an experienced human teacher (in our scenario 
involving Mia, this would be David, the employee from the robotic manufac-
turer) should be able to discern which form of interaction is necessary to teach a 
specifi c kind of knowledge to meet specifi c circumstances. Experienced human 
teachers should know when to provide a particular kind of  feedback (i.e., re-
ward or punishment) so that the robot can learn from such feedback and adjust 
its behaviors to maximize future rewards. Experienced human teachers may 
also apply scaffolding, intentionally vary the situation, and design different 
experiences for the robot to learn the task and aspects associated with the task.

Thus, similar to the setting in human skill learning, human teachers’ behav-
iors and experience have a massive infl uence on the success of robot task learn-
ing. How, then, should we train a new generation of human partners/teachers, 
so that robots can be effectively taught through their  collaborations?

Enabling Robots to Engage Proactively in Learning

We cannot expect that every human partner will be capable of identifying and 
employing the most effective means to teach the appropriate kind of knowl-
edge. Thus a robot needs to be able to share the burden of selecting effective 
strategies. A crucial issue, as yet unstudied, is: How can a robot be made to be 
aware of its own learning situation—one in which it is capable of communicat-
ing to the human its limitations and proactively requesting the right kind of 
teaching from the human?
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Capabilities to Perceive the Environment and Human Inputs

The ability to perceive the  environment and human inputs as well as to infer 
current task-related states and communicative states is fundamental to ITL. 
A robot must be able to recognize task-relevant objects in the environment, 
the change of the environment caused by an action, task demonstration from 
humans, as well as verbal and nonverbal human communicative behaviors. 
It must also be able to infer human intent, interpret instructed actions and 
their involved objects, and derive task structures by grounding language to 
perception.

Visual Perception

Performing  or learning tasks inevitably requires an understanding of objects 
and environments integral to the tasks. This includes objects, their proper-
ties, fl uents (i.e., attributes which  can potentially change), and relations, as 
well as an understanding of external actions and how they may have changed 
the perceived state of the physical world. As humans can perform actions 
to teach robots and apply nonverbal modalities (such as deictic  gestures, 
iconic gestures, and  gaze directions) to facilitate communication, the robot 
should also have the capability to recognize the state and actions of its hu-
man partners.

Acquiring perceptual capability has been the main research goal for the 
computer vision community. Most of the learning algorithms for perception 
are trained offl ine and rely on large training data for  object recognition, activ-
ity recognition, and so forth. Recent years have seen signifi cant progress on 
recognition of common objects from static scenes (e.g., images) (Grauman 
and Leibe 2011). However, in a dynamic scene, such as would be encountered 
in task learning, object tracking and human action recognition still face many 
challenges (for reviews, see Aggarwal and Ryoo 2011; Sargano et al. 2017). In 
addition, during task learning, it is likely that neither relevant computer vision 
models nor suffi cient data are available. Thus, it is critical for the robot to con-
tinuously acquire new models for object recognition through interaction with 
its human teacher. The teacher can use language to provide the name, the ob-
ject type, and related properties to a perceived object in the environment, and 
the robot needs to learn a generalized model effi ciently (e.g., for object recog-
nition) that can be applied in new situations. Key research questions include:

• How can a robot learn reliable models based on a small number of ex-
amples with limited human supervision during interaction?

• How can it transfer and adapt models learned from previous experience 
to a new situation (e.g., transfer learning), perhaps with limited human 
intervention?
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Language Understanding

Language plays an important role in ITL. From a human’s linguistic utter-
ance, the robot needs fi rst to understand the underlying intent of the teacher 
(e.g., whether it is to teach the robot a new step or to correct the robot’s cur-
rent  understanding of a learned step or action). When a referring expression 
is involved, the agent needs to understand what entities, from the interaction 
discourse or the shared environment, are being referenced. When the utter-
ance describes some task steps, the agent needs to understand what actions are 
specifi ed and what participants are involved (e.g., agent, patient, instrument, 
source, destination). The robot also needs to be able to extract any information 
from the utterance that specifi es preconditions, effects, and constraints (e.g., 
temporal orders) associated with actions and tasks. To help achieve the above-
mentioned abilities, recent advances in natural language processing—particu-
larly in syntactic parsing, semantic processing, and discourse processing—can 
be applied (Jurafsky and Martin 2008). In the event that the robot cannot suc-
cessfully understand human utterances, dialogue can be applied to clarify hu-
man intent and disambiguate different interpretations of linguistic expressions.

In situated interaction,  language communication is often accompanied by 
other nonverbal modalities, such as  gesture. Deictic gestures (e.g.,  pointing to 
objects in the environment) and iconic gestures (e.g., waving hello or indicat-
ing an action or a particular type of object) are vital to an understanding of the 
teacher’s intent. Pointing gestures are essential to task instruction because the 
array of objects in a task (which may be diffi cult to describe verbally) lead 
to the need to point at them rather than rely solely on language descriptions. 
Matuszek et al. (2014), for example, combine language and gesture to interpret 
directives in human–robot interaction.

Speech communication is perhaps one of the most natural means of in-
teraction in task learning.  Speech recognition has made signifi cant progress 
over the last decade. More recently, advances in deep neural networks have 
made it possible for machines to achieve recognition performance on par with 
human performance. At the time of writing of this article, Google reported a 
4.9% word error rate in recognition while human performance is estimated to 
be around 4% word error rate (Saon et al. 2016). Although encouraging, these 
results were often obtained based on offl ine benchmark data. Thus, it is not 
clear whether the same performance can be attained in a real-time, interactive, 
and unconstrained environment. How can recent advances in speech recogni-
tion be successfully applied to real-time interactive systems for task learning?

Unlike traditional natural language processing, linguistic knowledge must 
go beyond pure symbolic representations—as in a dictionary or thesaurus—
to enable communication with physical robots. The meanings of words need 
to be grounded to the robot’s internal representations that are connected with 
sensors and effectors. Concrete nouns, for instance, need to be grounded to 
the types of objects or object attributes perceived from the environment (e.g., 
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color words grounded to color histograms). Adjectives are often grounded to 
the perceived attributes (e.g., the size of the bounding boxes, the weights of 
an object) and fl uents (e.g., door open or closed, box open or closed). Verbs 
need to be grounded to the underlying action representations, which can be 
accessed by the robot’s control system to plan and execute the corresponding 
actions. On one hand, existing knowledge of grounded word semantics will 
be applied to ground language to perception and action (discussed in the next 
section). On the other, as new words are often encountered during interaction, 
they should be acquired continuously through situated interaction (Mohan 
et al. 2012). When a situation changes (e.g., a change in the environment), 
the learned word representation may not fi t the new situation (e.g., a lighting 
change in the environment may affect grounded word models for color words). 
Thus, it is important that word models are adaptable to new situations (Liu and 
Chai 2015; Thomason et al. 2015).

Grounding Language to Perception

The capability to ground human language to the perceived physical environ-
ment is particularly important for task learning. Suppose a human teaches the 
robot how to boil water by demonstrating to the robot how to achieve this task 
through step-by-step instructions: “pick up the pot, fi ll the pot with water, boil 
the water…” To learn how to perform this task, the robot must fi rst understand 
what perceived objects are involved in each step of instruction by grounding 
the arguments of action verbs, such as the noun phrase the pot, to the perceived 
objects in the environment.

This task of  grounding language to perception of the environment has re-
ceived an increasing amount of attention (Krishnamurthy and Kollar 2013; 
Matuszek et al. 2014; Mooney 2008; Tellex et al. 2011, 2014; Yang et al. 2016; 
Yu and Siskind 2013). Most previous approaches fi rst process language and 
vision separately, and then integrate the partial results together. In a dynamic 
scene with ongoing activities, computer vision algorithms still have diffi culty 
reliably recognizing and tracking objects and actions; this leads to a bottleneck 
in grounding language to vision. Recent  deep learning approaches directly 
fuse raw features from language and vision and have achieved state-of-the-art 
empirical results on applications such as caption generation from images/vid-
eos and visual question answering. These approaches, however, require a large 
amount of training data. To integrate language and vision in the context of ITL, 
what would be the optimal architecture?

Another line of recent work has explored  causality modeling for action 
verbs (Gao et al. 2016). Here the idea is that knowledge of how concrete ac-
tion verbs (e.g., cut, slice, pick up, etc.) might alter the world can drive visual 
detection. For example, from the directive “slice the cucumber,” knowledge 
about expected changes to the cucumber will provide high-level guidance to 
look specifi cally for grounded objects with relevant features (or the change 
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of features) in the visual scene. Recent work has also explored  commonsense 
physical  knowledge about objects that are implied by action verbs (Forbes and 
Choi 2017). For example, “he threw the ball” implies that “he” is bigger and 
heavier than “the ball.” This kind of implicit knowledge can potentially pro-
vide additional cues to ground language to perception.

Capabilities to Act and Communicate

Enabling a robot to learn new tasks requires capabilities to carry out task-
related actions as well as actions that facilitate communication. These capabili-
ties span a wide range, from navigation and manipulation to communication.

Task-Related Actions and Grounding Language to Action Representation

A robot’s action capabilities can be based on manually designed and tuned 
controllers as well as policies learned from human demonstrations or through 
 reinforcement learning. In some robotic applications, it is essential for the 
robot already to possess all of the action capabilities needed to complete a 
task. For example, previous work in the robotics community aimed to translate 
natural language instructions to robotic operations (Kress-Gazit et al. 2007; 
Spangenberg and Henrich 2015), but they were not designed for learning new 
actions or tasks. In other cases, tasks and actions can be learned simultane-
ously. For example, Mohan and Laird (2014) developed a system where a ro-
bot can learn a hierarchical representation of a new task based on linguistic 
interaction with the human. Similarly, Liu et al. (2016) applied grammar in-
duction to learn a hierarchical and/or graph representation for a new task from 
a human’s language instructions and visual demonstrations.

To support action learning from language instructions, recent work has 
begun to explore the connection between semantics of concrete action verbs 
and  action planning (Misra et al. 2016; She et al. 2014) and explicitly repre-
sented grounded verb semantics as desired goal states of the physical world as 
a result of the corresponding actions. Such representations are learned based 
on example actions demonstrated by the human. For example, a human may 
teach the robot how to “boil water” by issuing step-by-step language instruc-
tions which the robot knows how to perform: “move to the kettle, grasp the 
kettle, move to the stove…” By following these steps, the robot will experi-
ence the change of the physical world. By capturing the differences between 
the goal state and the initial state, the robot is able to acquire the semantics 
of the verb frame “boil (water).” Once acquired, these grounded representa-
tions will allow the robot to interpret verbs/commands issued by humans in 
new situations and apply planning to execute actions. One limitation of previ-
ous work is that the algorithms were mainly developed based on simulations 
(e.g., simulated Baxter robots). Except for a few (e.g., She and Chai 2017), 
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uncertainties from the environment were largely ignored. However, the world 
is full of uncertainties at various levels: from motion planning to perception 
and language grounding. To extend task learning from language instructions 
to the physical world, it is paramount to address how to integrate uncertain-
ties at multiple levels together, so that new actions associated with concrete 
action verbs can be learned.

Verbal and Nonverbal Communicative Action

Separate from its task-related actions, a robot will need to perform communica-
tive actions to facilitate its learning/teaching interactions. In situated interaction, 
both verbal and nonverbal modalities are available for the robot to communicate 
to its human partner. Some example communication abilities include:

• generating speech and deictic gestures to confi rm  understanding of in-
structions or refer to objects in the environment (Fang et al. 2015);

• generating  gaze direction, communicative head gestures (e.g., nodding 
and shaking head), or  facial expressions (confused or confi dent face) to 
respond to human input at different points in the interaction (Holroyd 
et al. 2011); or

• displaying visualizations of learned concepts to enable humans to in-
spect them.

In particular, the embodiment of a physical robot can take advantage of non-
verbal modalities (e.g.,  gaze and  gesture) for effi cient communication. The 
robotics community has learned from psychologists that gazing at others and 
at objects in the environment are quintessential human behaviors. Gaze that is 
used to convey information to a  collaborator is referred to as social gaze. Gaze 
at a collaborator functions to gather attention from the other, to indicate social 
presence, and to indicate  attention to the individual (e.g., turn-taking via gaze 
aversion). Gaze at objects serves to indicate what one is paying attention to, is 
about to point at, what one intends to do next, or to indicate that what another 
has focused on should now be the object of mutual gaze. Collaborators use gaze 
information to assess how well their partners comprehend their collaborations 
as well as to assess the collaborators’ level of continued  engagement (Rich et 
al. 2010). Every one of these abilities is valuable in task learning, as they en-
able the assessment of how the learning is progressing, whether the learner is 
looking in the right direction, and what the teacher intends for the learner to 
do. Gestures also have similar effects in coordinating interaction, establishing 
shared  attention, and providing feedback. Proxemics, which models the stance 
of individuals to others and how they approach one another, can be signifi cant 
in tasks because where the learner stands in performing a task may be crucial. 
How to generate verbal and nonverbal communicative behaviors effectively to 
facilitate task learning remains an important focus for  future research.
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Capabilities to Manage and Coordinate Interaction

Managing interactions between humans and robots is critical to support task 
learning/teaching. At any point in the interaction, robots need to decide what 
to do next based on interaction history, current situation, and learning goals. 
These decisions can be made by following simple decision rules that are manu-
ally crafted or interaction policies that are learned from experience.

Interaction Management and Active Learning

Decades of work on  dialogue modeling are relevant for ITL. Different ap-
proaches have been developed, for example, driven by  intention and collabora-
tion (e.g., Grosz and Sidner 1986; Rich and Sidner 1998), based on information 
states (Larsson and Traum 2000) or interaction policies learned from  reinforce-
ment learning (Kaelbling et al. 1996; Young et al. 2013). Despite recent prog-
ress,  dialogue modeling remains a signifi cant challenge. Dialogue models need 
to be able to accommodate  interruption,  turn-taking, and other dialogue behav-
iors, which neither the intention-based nor information state approach have 
successfully addressed, but are essential in task instruction.

Specifi cally, to learn new tasks, active learning has been shown to be an 
important component that contributes to effective interaction management. 
Most work on task learning assumes a learner that passively receives informa-
tion from the teacher. However, humans are often suboptimal in their teaching 
when the learner is passive. One line of work explores active task learning 
whereby the learner actively requests specifi c information that it evaluates as 
most useful. Active questioning enables much more effi cient learning. For ex-
ample, Chao et al. (2010) and Cakmak et al. (2010) demonstrated that an active 
learner (both human and robot) which requests labels (positive/negative) for 
specifi c instances of a task goal outperforms a passive learner taught by ex-
amples selected by naïve human teachers. In particular, Cakmak and Thomaz 
(2012) identifi ed three types of queries that can be used by a human/robot 
student as part of active task learning:

1. Demonstration queries asking for a full or partial demonstration of 
the task

2. Label queries asking whether an execution is correct
3. Feature queries asking about the relevance or invariance of specifi c 

aspects of the task

Recent work by She and Chai (2017) extended this question–answer style of 
interaction and applied reinforcement learning to acquire an interaction pol-
icy that allows the robot to handle noisy environment and learn new verbs 
and corresponding actions. To improve ITL, we need to know how to engage 
in a full range of interaction that can incorporate active learning with other 
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communicative goals (e.g., clarifi cation and disambiguation) to acquire more 
reliable models of skills.

Extra-Collaborative Effort and Transparency

In human–human task learning, human teacher–learner partners often share 
similar perceptual capabilities as well as basic  commonsense  knowledge to 
support their collaboration.

In human–robot task learning, however, there are huge discrepancies in 
 background  knowledge between humans and robots. The robot, for instance, 
often does not have suffi cient background knowledge to learn a new task. 
Furthermore, although they may be co-present in a shared environment, hu-
mans and robots have mismatched capabilities in reasoning, perception, and 
action: their representations of the shared environment and  joint tasks can be 
signifi cantly misaligned. A signifi cant challenge involves the lack of common 
ground and discrepancies in the human’s mental model of what a robot knows 
and is capable of doing. Previous work (Chai et al. 2016) has shown that to 
bridge the gap and strive for a  common ground of shared representations be-
tween humans and robots, extra effort is needed. This extra-collaborative effort 
in interaction not only has implications in algorithms for  language grounding, 
but also affects  interaction management.

Transparency plays an important role in achieving common ground and 
promoting accurate mental models during interaction. For example, Thomaz 
and Breazeal (2006) demonstrated that natural transparency mechanisms, 
like  gaze, can steer the human’s behavior while demonstrating a task. Pejsa 
et al. (2014) used  facial expressions to provide transparency about dialogue 
uncertainties. Alexandrova et al. (2015) employed interactive visualizations 
of learned actions to enable teachers to verify tasks that are learned from a 
single demonstration and correct any mistakes they detect. Guha (2016) used 
 pointing to communicate the robot’s  understanding of a referenced object, 
and Whitney et al. (2016) used heat map visualizations and facial expressions 
to communicate uncertainty about its inference. Recent work by Hayes and 
Shah (2017) allows a robot to automatically generate verbal description of its 
learned policy (i.e., which actions it takes in which contexts).

To enable common ground for effective task learning, there are many re-
search questions to pursue:

• How can an agent make its internal representations (e.g., causal-effect 
relations) transparent to the human?

• How can an agent explain its autonomy or decision so that the human 
can better understand the agent’s capabilities and limitations?

• What are the mechanisms to manage interaction so that it can encour-
age a human’s collaborative behaviors and simultaneously create more 
collaborative behaviors from the robot?
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Conclusions

To fully support teaching robots new tasks through interaction, many chal-
lenges and open questions remain as discussed above. While the scenarios in 
the introduction focused on in-home settings, teaching robots new tasks is ap-
plicable in many situations, especially ones with highly structured environ-
ments. Already robots are being trained by people in ad hoc ways to work 
in manufacturing assembly lines (e.g., Guizzo and Ackerman 2018). Robots 
working in warehouses are largely programmed by hand, but it is not diffi cult 
to envision the need for them to be taught tasks by human coworkers. The same 
applies to robots in the service industry (e.g., hotel helpers).

One key challenge in  task learning, which we did not discuss, is evaluation—
a critical and diffi cult issue in interactive systems because many confounding 
factors are involved. In the context of ITL, the following questions arise:

• How do we know that the task has been learned?
• What additional metrics are needed to evaluate the success of task ac-

quisition beyond traditional metrics for evaluating interaction (e.g., ef-
fi ciency and task completion)?

• What are reasonable baselines and upper bounds, for example, learned 
fron human–human interaction?

• How do researchers conduct longitudinal studies and evaluation?
• What kinds of products are available that might make longitudinal 

evaluation (e.g., putting robots in people’s house) possible?

While our focus in this chapter has been mainly on task learning where humans 
serve as teachers and robots serve as learners, it is not diffi cult to imagine that 
a well-trained and capable robot could also teach humans new tasks. In the 
 intelligent  tutoring world, computer programs have been teaching humans in 
various ways for more than three decades. Virtual agents teach humans all 
sorts of tasks, from turbine engine operation (Rickel and Johnson 2000) to 
negotiation (Gratch et al. 2015) to cross cultural communication (Johnson and 
Zaker 2012). The idea that robots might teach humans has received relatively 
little attention, perhaps in part due to the lack of capabilities. Robots are not 
yet teachers, but for many tasks (e.g., from doing experiments to manipulation 
of heavy equipment), the physical form of a robot will be useful in ways that 
computer programs and virtual agents are not. As robots become more capable, 
a reversal of the teacher/learner role is foreseeable and will bring further re-
search challenges and opportunities.
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